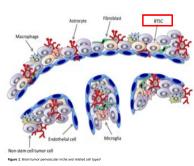


Quantum Dots for the Targeting of HGF Binding Sites and Downstream Targets in Cancer Chemotaxis

Sean McCutcheon & Maribel Vazquez


Department of Biomedical Engineering, The City College of the City University of New York, NY

Abstract

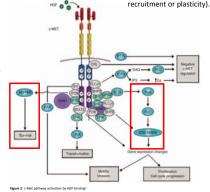
Medulloblastoma is the most common form of malignant pediatric brain cancer. Medulloblastoma treatment has greatly improved in recent years, but still commonly results in disability and severely reduced life expectancy. The study seeks to utilize micro and nano-based technologies to examine chemotaxis of medulloblastoma cells *in vitro*. It has been shown that there is a resistance of medulloblastoma in some cases to radiation. It is proposed that higher Hepatocyte Growth Factor (HGF concentrations in the tumor microenvironment may play a role. The study primarily focuses on fluorescently tagging specific cellular receptors and down-stream targets utilizing liposome encapsulated Quantum Dots (QDs). The targeted application of the technology is to examine changes in growth factor receptor membrane localization, the HGF receptor, C-Met, and downstream molecule movement and activation in response to growth factor concentration gradients. The binding of HGF to c-Met corresponds to the activation of pathways critical for cell survival (PI3K/Akt/mTOR), and proliferation (RAS/RAF/MEK), as well as cell motility. Finding the relationship between cell movement and utmor self-renewal could provide a solution to the problem of treatment resistance.

Background

Brain Tumor Perivascular Niche

tissue and the blood stream. It is responsible for nutrient and oxygen availability and plays a major role in cell signaling. The perivascular niche is comprised of cells which produce and are influenced by exogenous factors. A subset of vessel adjacent cells have been shown to exist in a stem-like state. It is proposed that this is a result of dedifferentiation of healthy cells. The stemlike properties result in increased resistance to treatment. It has yet to be determined the impact of elevated HGF in the vasculature (cell

The tumor vasculature


healthy tissue, cancer

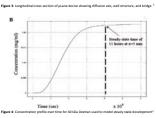
forms an interface between

C-Met Signaling Pathway

C-Met is upregulated in radioresistant medulloblastomas. There are two signaling pathways of interest for the study of c-Met activation as it relates to cell migration and survival. RAS/RAF/MFK is implicated in cell motility and tumor growth PI3K/Akt/mTOR is implicated in cell

resilience.

Microtechnologies


μLane Device and Gradient Characterization

The µLane system is a platform for controlled observation of cell migration in a straight microscale channel molded from PDMS, and bonded to a glass substrate. Hydorstatic pressure is equalized by a bridge channel and 1-Dimensional convective flow can be assumed due to the small transverse crosssection of the channel.

1-D Convective diffusion $\frac{\partial C}{\partial t} + V \frac{\partial C}{\partial x} = D \frac{\partial^2 C}{\partial x^2}$

Time to steady state is dependent on molecule size, solubility, and position within the channel. HGF has a molecular weight of 68 kDa, and would take >12 hours to reach steady state.

C Bodayd chassed Sale Chaster Chaster Chaster Chaster Theorem Chaster Theorem Theorem

Early Cell Migration and Device Interfacing Experiments

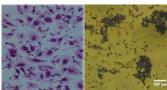
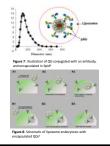
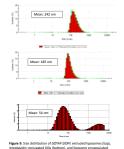


Figure 5: Tunical Readon Chamber areas for DATM cells (light) and chartened CHI & 01 MED cells (light


Boyden chamber assay was used to do preliminary tests on the affinity of CHLA-01-MED cells for varied HGF concentrations. It was found that due to cell clustering meaningful cells counts could not be determined.

The cells were placed in the microchannel as a check for cell compatibility with glass substrates and to examine their previously demonstrated colony-forming tendencies. It was found that though the cells clumped in the wells, they were both clumped and singular within the channel litted!

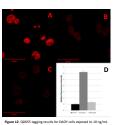

Nanotechnologies

Liposome Mediated Endocytosis

Liposome encapsulation of streptavidin conjugated QDs provides access to the intracellular space and selective molecule tagging. Conjugated QDs were complexed with anti-C-Met antibody to measure c-Met activation in the presence of varied HGF concentrations as a preliminary step to optimize receptor activity as a function of ligand gradient. The same was done with primary and secondary antibody labeling alone.

Liposome Preparations and Sizing

Sizing of QDs, extruded DOTAP:DOPE liposomes, and QDs encapsulated in liposomes was done to verify experimental parameters and optimize extrusion protocols.


A test of endocytosis via liposome-cell membrane fusion was done using nonspecific endocytosis of liposome encapsulated QDs in DAOY cells.

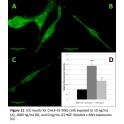
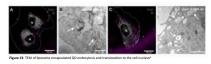


Figure 10: Non-specific QD endocytosis in DAOY cells

Immunocytochemistry

A primary anti-c-Met antibody was used to label activated c-Met under the stimulation of HGF. A secondary fluorescent antibody was used for imaging and expression quantification. 10 ng/mL of HGF showed the greatest receptor activation, and therefore greatest likelihood of creating down stream effects that impact cell behavior.



QDs with emission wavelength of 655nm were conjugated to a primary c-Met antibody and used to tag c-Met activation under HGF stimulation. Similar to the results obtained by ICC, 10 ng/mL of HGF showed the greatest receptor activation.

Discussion and Future Work

Having established the relative optimal concentration of HGF for c-Met binding activity, characterized the labeling particles, developed protocols for molecule tagging, and verified a migratory platform device, it will be possible to tag intracellular proteins in the c-Met activation pathway, specifically those responsible for cell migration and cell survival. The next step is to study the response of intracellular proteins to HGF stimulation and to observe cell migratory behavior exposed to a concentration gradient within the microdevice.

References and Acknowledgements

Acknow

Ther Adv Med Oncol. 2011 November; 3(1 Suppl): 57-519
 Journal of Biomechanical Engineering DECEMBER 2010, Vol. 132 / 121012
 Annals of Biomedical Engineering, Vol. 37, No. 10, Oct. 2009 pp. 1967-73.

Research funded by the National Cancer Institute (CA118255 and CA143798) and the CUNY Science Fellowship.

Lab of Maribel Vazquez: Jennifer Rico, Tanya Singh, John Uchenna