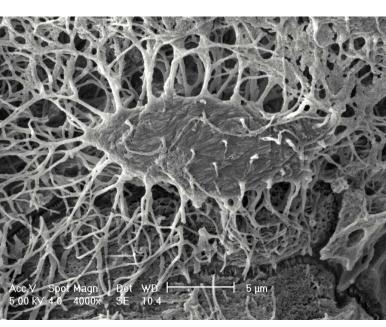


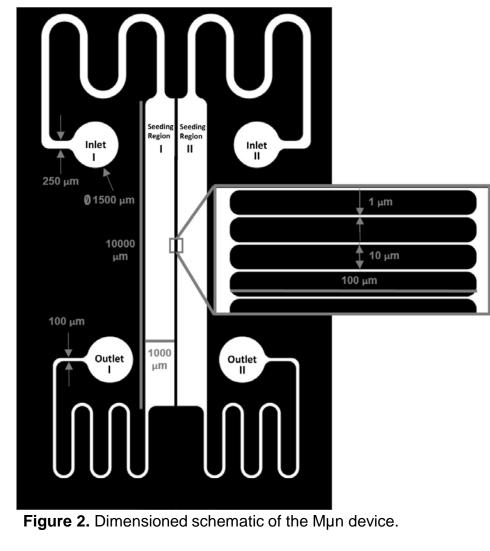
A Multiscale Device for the Study of Compartmentalized Purinergic Signaling¹


Sean McCutcheon¹, Robert J. Majeska, PhD¹, Mitchell B. Schaffler, PhD¹, Maribel Vazquez, PhD¹ ¹The City College of New York, CUNY

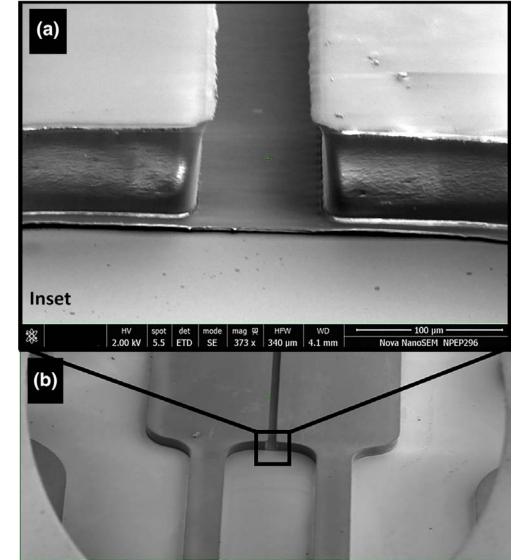
ABSTRACT

Many cell types communicate by means of dendritic extensions via a multi-tiered set of geometric and chemical cues. Until recently, mimicking the compartmentalized in vivo cellular environment of dendrite-expressing cells such as osteocytes and motor neurons in a spatially and temporally controllable manner was limited by the challenges of in vitro device fabrication at submicron scales. Utilizing the improved resolution of current fabrication technology, we have designed a multiscale device, the Macro-micronano system, or Mµn, composed of two distinct cell-seeding and interrogation compartments separated by a nanochannel array. The array enables dendrite ingrowth, while providing a mechanism for fluidic sequestration and/or temporally-mediated diffusible signaling between cell populations. Modeling of the Mun system predicted the ability to isolate diffusible signals, namely ATP. Empirical diffusion studies verified computational modeling. In addition, cell viability, dendrite interaction with the nanoarray, and cellular purinergic response to heat shock were experimentally evaluated within the device for both osteocytes and motor neurons. Our results describe a novel in vitro system in which dendriteexpressing cell types can be studied within nanoenvironments that mimic in vivo conditions. In particular, the Mµn system enables real-time observation of cell to cell communication between cell populations in distinct, but fluidically coupled regions.

BACKGROUND

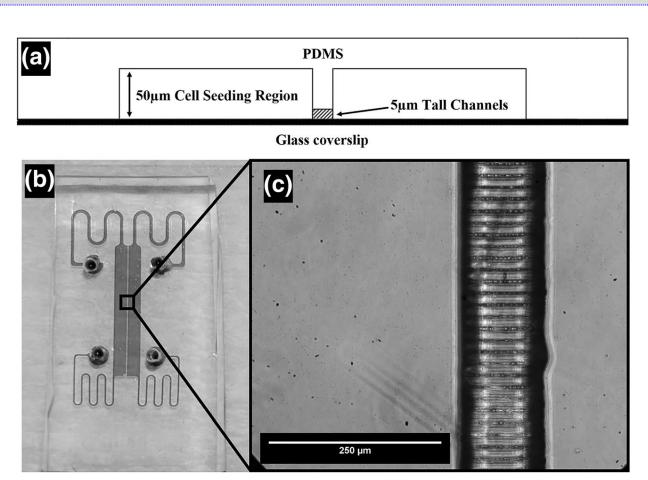

- Nanoscale interactions among cells and extracellular signaling molecules are essential elements of numerous biological processes including cell adhesion, migration, proliferation, and apoptosis.
- Cells with such interactions are those that utilize arrays of dendritic cell processes to achieve highly selective pathways of intercellular communication, e.g. cells of the nervous system, dendritic cells within the immune system, and *osteocytes* in bone (Fig 1).
- For dendrite expressing cells, the fundamental challenge is to create an environment in vitro that allows identification and study of specific cellular interactions mediated by cell processes or dendritic networks.

Mimicking the system includes controlling geometrically confined cellular spaces and chemical cues such as the diffusion of paracrine signals through a porous medium³:


$$\ln\left(\frac{C_0 - 2C}{C_0}\right) = -\left(\frac{A \cdot D}{V\delta}\right)t$$

METHODS AND MATERIALS

- The Mun was designed in AutoCAD and fabricated by photolithography on Si wafer using SU-8 negative resists. The mold was silanized to ease mold release, and PDMS was used to create functional devices bonded to glass (Fig 2,3,4).
- The device was modeled using COMSOL for fluid flow profile, heat transport, and diffusion of exogenous small molecules.
- Diffusion was modeled experimentally using fluorescein and rhodamine under static and dynamic flow conditions.
- MLO-Y4, osteocyte-like cells, and B35 motor neurons were seeded within the Mun on a fibronectin surface coating and assessed for morphology.
- Localized heat shock within the device was used as a method of inducing apoptosis, which was measured by caspase cleavage dye.
- ATP release was measured as a function of unheated vs unheated regions of the Mun by firefly luciferase bioluminescence assay.


ල ල ල ල ල ල Figure 3: Mun fabrication process by 2-step soft

SU-8 on Si with inset (a) and wide view (b).

 P2X7 receptor expression was evaluated by immunocytochemistry (ICC)

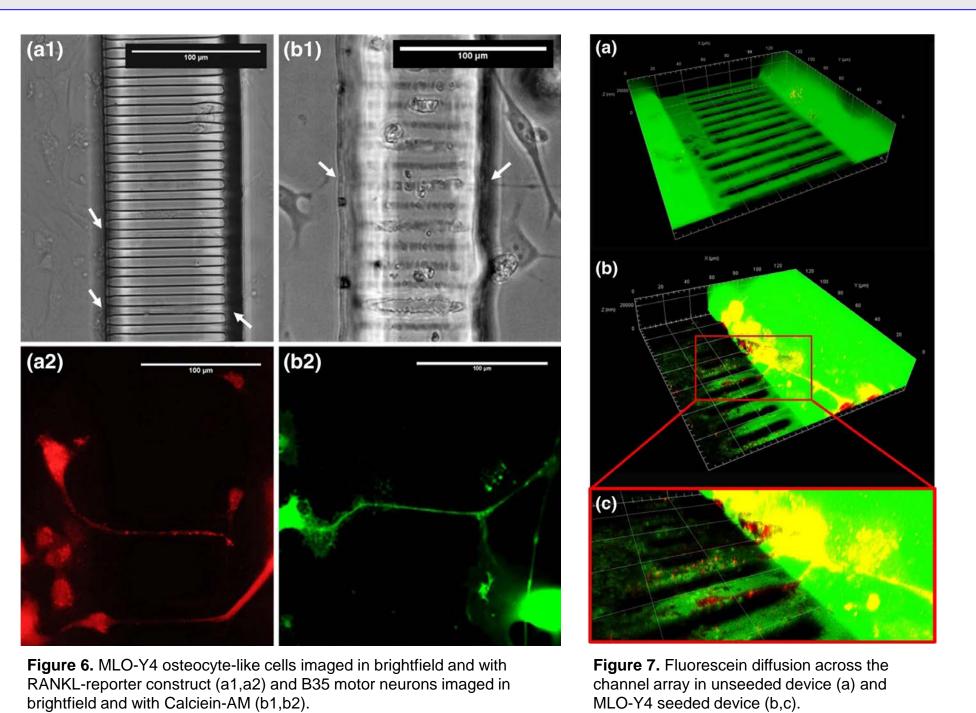
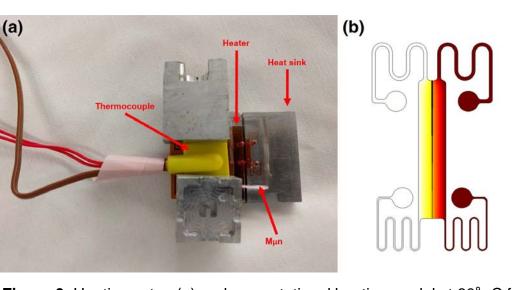
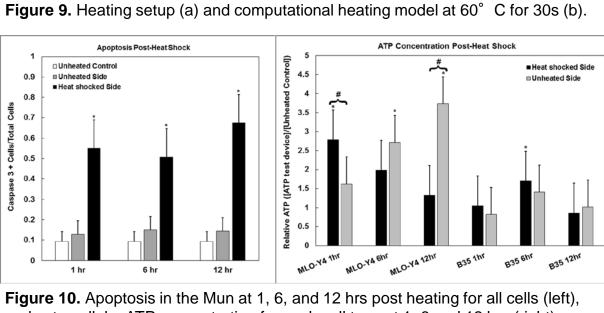

RESULTS

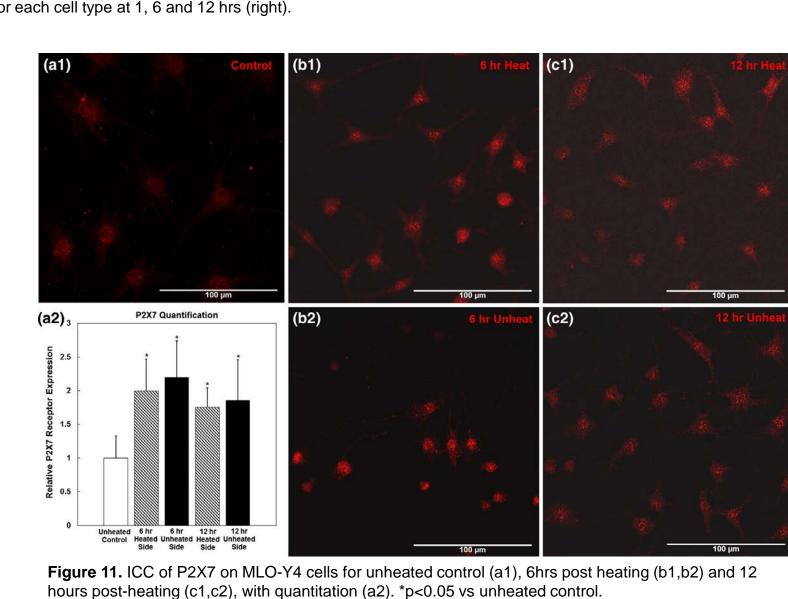
Figure 5. Side view illustration of Mµn device cast in PDMS and bonded to a glass slide (a) with fabricated PDMS device (b) and channel array inset (c).

- The Mµn was successfully fabricated in SU-8 negative photoresist on Si, then molded in PDMS, with measured channel widths of 930nm +/-350nm (Fig 5).
- The sufficient bonding of the device and fluidic separation of the seeding regions were confirmed by parallel flow of dye within the device.


RESULTS



- Both motor neurons and osteocytes were shown to maintain viability in the Mµn (>90%) and extend their dendritic processes into the channel array (Fig 6) without chemokine induction. Osteocytes at ~60% and neurons at ~25%.
- Diffusion within the device was computationally modeled and experimentally quantified (Fig 8), showing a decrease in small molecule diffusivity with the addition of osteocytes (Fig 8, Tab 1).


Molecule	MW (Da)	Theoretical diffusivity (μm²/s)	Experimental diffusivity (µm²/s
Rhodamine 6G	479	414	255.56 +/- 11.6
Fluorescein	376	425	290.53 +/- 25.0
Rhodamine 6G + MLO-Y4	-	-	191.67 +/- 15.8*
Fluorescein + MLO-Y4	-	-	182.78 +/- 8.1*
ATP	551	302	_

p < 0.05 between respective tracer diffusivities of cell-seeded devices and devices with no cells Table 1. Theoretical and experimental diffusivity of small molecules in the

 ATP receptor, P2X7, was upregulated on both the heated and unheated side of the Mun at 12 hrs post heat treatment in MLO-Y4 osteocyte-like cells as visualized and measured by ICC (Fig 11).

-Rhodamine 479 Da

Heat-stress was used to

induce apoptosis in the Mun

using a heating element and

isolation of the effect to one

concentration was shown to

increase in the unheated

side of the device over 12

undergoing apoptosis, but

not motor neurons (Fig 10).

heat sink. Computational

modeling predicted the

confirmed by caspase 3

side (Fig 9) and was

measurements.

Extracellular ATP

hrs for osteocytes

···Fluorescein 379 Da

DISCUSSION

- The Mµn system readily mimics the physical space through which dendritic processes interact in vivo, and therefore may promote increased phenotypic similarity and cell function of dendrite-expressing cells.
- Experimental results validate the computational model used for ATP diffusion under parallel flow to within 10%, highlighting the Mµn system's versatility in using parallel flow for control of extracellular signaling molecules and evaluating their impact on cells.
- Experimental free diffusion measurements indicate that diffusion across the array is consistent with the expected values for each molecule. The decreased diffusivity upon cell seeding is expected given the decreased cross-sectional area for diffusion due to process ingrowth and resultant partial channel obstruction
- Osteocytes demonstrated a higher interaction efficiency than neurons, likely due to phenotypic differences between the cell types. Traversing of the channel array structure by extensions of both cell types indicates the potential for cell to cell interaction between regions, which is readily initiated using the Mµn system.
- Post-heat shock increases in extracellular ATP for osteocytes was paired with elevated P2X7 receptor expression on both sides of the device, showing the Mµn can be used to measure paracrine purinergic signaling across the array.

CONCLUSIONS

- We have designed and fabricated a fluidic device that functions at the macro, micro, and nanoscale to recapitulate the geometric and chemical cues seen by cells with dendrite-mediated communication in vivo.
- This device enables evaluation of dendrite-mediated cell signaling, over time, in response to controlled transport of ATP-like molecules.
- Data illustrate that two distinct cell types, osteocytes and motor neurons, remained viable and interactive within the device for up to 7 days. Data also show that release and diffusion of purinergic signals as well as cellular response, can be quantified within our device.
- These results underline the Mµn system as a versatile platform for the study of dendritic cell signaling in vitro. In addition, the range of geometric scales will further enable insight into immediate and downstream cell behaviors governed by dendrite-based cell to cell communication, such as the role of osteocytes in osteoclastogenesis.

Future Work

- Examine the connectivity of osteocytes traversing the Mµn by quantifying gap functionality.
- Develop gene reporter systems, specifically RANKL in osteocytes, to quantify the apoptotic response of cells to heat stress, shear stress, and nutrient
- Examine the mechanism of ATP bolus release as well as the spatial and temporal resolution of the apoptosis-induced purinergic "find me signal."

REFERENCES AND ACKNOWLEDGEMENTS

3. Podichetty et al. Biotechnol. Prog. 28, 1045-1054 (2012).

McCutcheon et al. Biomedical Microdevices

2. Pajevic. IBMS BoneKEv. 2009.

